
Тензодатчик типа "твистлок" до 25 т Модель F9205

WIKA типовой лист FO 54.12

Применение

- Взвешивание контейнеров непосредственно на распределителе
- Определение распределения нагрузки в контейнере
- Для Reachstacker, Straddle Carrier, Rubber Tired Gantry Crane (RTG), Ship to Shore Cranes (STS)

- Диапазоны измерения от 0 ... 6 т до 0 ... 25 т (возможны другие диапазоны)
- Относительная ошибка линеаризации 2 % F_{nom}
- Оптимален для модификации с помощью простой интеграции в крановую сеть через CANopen[®] и CAN SAE J1939
- Высокая перегрузочная способность, длительный срок службы измерительной пружины, высокая ударопрочность и виброустойчивость
- Компактная конструкция, идеален для модернизации распределителя

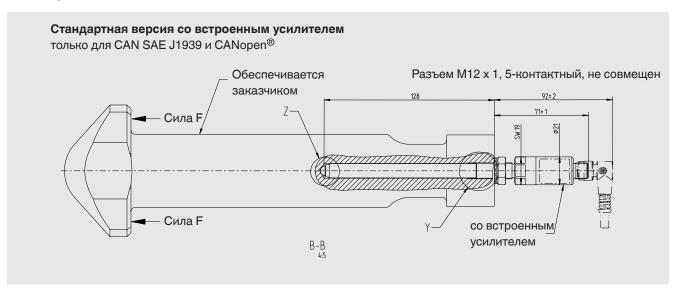
Тензодатчик типа "твистлок", модель F9205

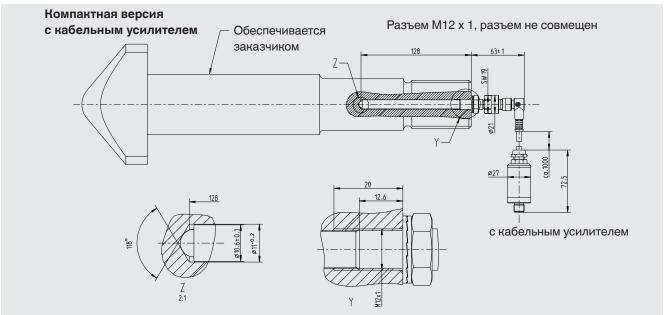
Описание

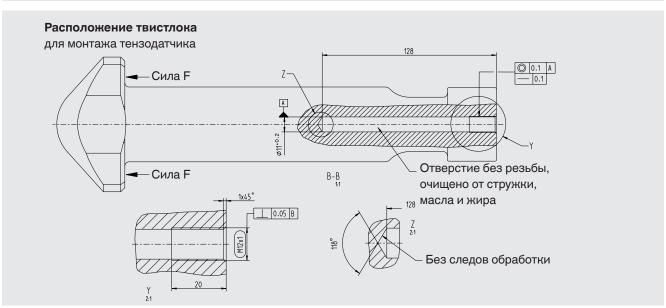
Тензодатчик типа "твистлок" используется для измерения массы на распределителе, а также для взвешивания контейнеров перед погрузкой.

С этой целью стандартные твистлоки распределителя заменяются на измерительные твистлоки. Тензодатчик твистлока модели F9205 может монтироваться вместо практически любого стандартного, после чего он становится преобразователем силы, и с его помощью можно выполнять измерение силы и соответственно определять массу непосредственно на распределителе.

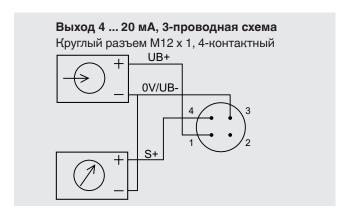
В отличие от полной системы твистлока TWLMS тензодатчик модели F9205 поставляется без самого твистлока. Монтаж выполняется заказчиком. Тензодатчик типа "твистлок" изготовлен из высокопрочной, коррозионно-стойкой нержавеющей стали 1.4542, свойства которой полностью соответствуют области применения преобразователя. В качестве выходных сигналов может использоваться активный токовый выход (4 ... 20 мA), а также цифровые выходы CANopen® и CAN SAE J1939.




Технические характеристики по VDI/VDE/DKD 2638


Модель F9205		
Номинальная нагрузка F _{nom}	до 25 т (другие по запросу)	
Относительная ошибка линеаризации d _{lin}	±2 % F _{nom}	
Относительный диапазон при неизменном монтажном положении b _{rg}	0,2 % F _{nom}	
Влияние температуры: на сигнал нуля TK_0	≤ ±0,35 %/10 K	
Влияние температуры: на характеристическое значение TK _C	$\leq \pm 0.2 \% / 10 \text{ K}$	
Предельная нагрузка F _L	150 % F _{nom}	
Разрушающая перегрузка F _B	Зависит от твистлока	
Номинальное смещение s _{nom}	< 0,1 MM	
Материал деформируемого тела	Нержавеющая сталь 1.4542, материал с сертификатом ультразвукового тестирования 3.1	
Номинальная рабочая температура B _{T, nom}	-20 +60 °C	
Диапазон температуры эксплуатации $B_{T,\;G}$	-40 +60 °C	
Температура хранения B _{T, S}	-40 +60 °C	
Электрическое подключение	Круглый разъем M12 x 1, 4-контактный, / CANopen® 5-контактный	
Выходной сигнал (номинальное характеристическое значение) C _{nom}	4 20 мА, 3-проводная схема CAN SAE J1939 CANopen ^{®1)}	
Напряжение питания	10 30 В пост. тока для токового выхода 9 36 В пост. тока для CANopen [®]	
Нагрузка	≤ (UB – 10 B)/0,024 A для токового выхода	
Время отклика	\leq 2 мс (в интервале от 10 % до 90 % F_{nom}) ²⁾	
Пылевлагозащита (по МЭК/EN 60529)	IP67	
Виброустойчивость (по DIN EN 60068-2-6) (по DIN EN 60068-2-27) (по DIN EN 60068-2-29)	20 g, 10 2000 Гц 100 g 40 g	
Защита	Защита от обратной полярности, повышенного напряжения и короткого замыкания	
Излучение помех	EN 55025	
Помехозащищенность	EN 45501	

¹⁾ Протокол в соответствии с CiA 301, профиль прибора 404, коммуникационная служба LSS (CiA 305). 2) Другие значения времени отклика по запросу. CANopen® и CiA® являются зарегистрированными торговыми марками CAN in Automation e. B.


Размеры в мм

Назначение контактов, аналоговый выход

4 … 20 мА 3-проводная схема	Назначение контактов	Цвет вывода
Питание UB+	1	Коричневый
Питание 0V/UB-	3	Синий
Сигнал S+	4	Черный
Сигнал S-	3	Синий
Экран 🚇	Корпус	Корпус

Назначение контактов, CANopen®/CAN SAE J1939

Назначение контактов	
Экран	1
UB+ (CAN B+)	2
UB- (CAN GND)	3
Сигнал шины, CAN-высокий	4
Сигнал шины, CAN-низкий	5

© 2019 WIKA Alexander Wiegand SE & Co. KG, все права защищены.
Технические характеристики, указанные в данном документе, были актуальны на момент его публикации.
Компания оставляет за собой право вносить изменения в технические характеристики и материалы своей продукции.

WIKA типовой лист FO 54.12 · 08/2019

Страница 4 из 4

